

New Therapeutic Angiogenesis Biomarkers for Chronic Diabetic Foot Ulcers Treated with Transdermal Hyperoxia/Topical Wound Oxygen (TWO₂)

Gary F. Scott, Ph.D.

Department of Cell Biology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107

ANGIOGENESIS & HEALING = REQUIRES PROLIFERATION OF (1) CAPILLARY CELL WALLS (ENDOTHELIAL CELLS), (2) SUPPORTED BY COLLAGEN SCAFFOLDING (FIBROBLASTS), (3) COVERED BY EPITHELIUM (KERATINOCYTES)

Local Molecular & Cellular Abnormalities in a Chronic (non-healing) Diabetic Wound

- · Growth factor and cytokine deficiencies
- Endothelial dysfunction
- Neuropathy: associated with endothelium dependent and independent dysfunction in diabetics predisposed to foot ulceration
- Arterial occlusive disease (PAD): associated with peripheral neuropathy, slower conduction velocity of sensory nerves, depression of autonomic responses
- Abnormalities in fibroblast function
- Abnormalities in extracellular matrix and decreased cellular infiltrate
- Decreased angiogenesis (thus sustained O₂ deprivation)

Oxygen in Tissues and Wounds

- All nucleated cells use O₂ energy metabolism (via mitochondria)
- Epidermis into papillary dermis use transdermal O₂
- From blood Hb, O_2 diffusion through membranes into is "concentration" dependent

In wounds, vessels disrupted, so lack O2

- Wound ischemic hypoxia impairs O₂-ase enzymes
 - Cytochrome O2-ase for ATP generation, uses 80% of O2 breathed
 - Prolyl hydroxylase for collagen synthesis, req. for angiogenesis
 - Phagocytic O2-ase for bacteria killing via 'respiratory burst' <u>Obvious rationale for supplemental O2</u>

Enforced O₂ concentration (TWO₂) increases diffusion distance

Renewed O₂ supply can activate repair molecules Highest priority to restore O₂, thus angiogenesis required!!

Chronic Wound Evaluation

- Healing is "stalled" in chronic non-healers, typically hyperinflammed, hyp-oxic.
- Angiogenesis, new capillary synthesis, is required for wound healing to restore blood flow (O₂ & nutrients in, waste & toxins out).
- Growth factors, secreted by platelets, neutrophils and macrophages, are required to induce angiogenesis.
- Angiogenic biomarkers of new healing are needed:
 - Endogenous growth factors, ie VEGF, FGF2
 - Functional neo-vessel surface marker, ie Integrin ανβ3
 - Endothelial Progenitor Cell homing signal, ie SDF-1
 - · Endothelial secreted vasodilator, ie Nitric Oxide

Does Oxygen Restore Healing in Chronic Wounds?

- What Growth Factors stimulate new blood vessel formation?
 VEGF & FGF2
- What biomarker do new capillary endothelial cells express that measures functionality? Integrin ανβ3
- What biomarker targets EPCs to injured ischemic tissue? SDF-1
- What O₂-sensitive molecules deficient in chronic wounds respond to TWO₂? VEGF, FGF2, Integrin αvβ3, SDF-1

Treatments and Wound Fluid Collection

- Topical Wound Oxygen Treatments (TWO₂) were administered with medical grade oxygen (>95% pure) in a TOCE (Topical Oxygen Chamber for Extremities) for 4 consecutive days, 90 minutes per treatment for 5 weeks.
- Wounds were digitally photographed and wound fluids were collected after treatment on day one and day four of each week's treatments.
- Fluids from the wound bed were absorbed onto a cotton swab by wiping to collect maximum fluid exudates' volume.
 Trimmed swabs containing wound fluids were solubilized in 0.1 M Phosphate Buffered Solution (PBS), fractionated by centrifugation and stored at –20oC for subsequent assay
- Simultaneous quantification of analytes was performed using a customized multiplex enzyme-linked immunosorbent assay (ELISA) at end of 5 weeks of treatment. Total protein in samples was measured.
- Analyte concentration changes per unit of total protein standardized for sample volume variance.
- In current ongoing studies, baseline wound fluid samples are collected weekly for 2 weeks prior to treatment for treatment effect comparison.

Physiological relevance of "new" Therapeutic Angiogenic biomarkers

Summary of Results of Therapeutic Angiogenic BioMarkers During Transdermal Hyperoxia (TWO₂) Treatments

· Angiogenic Growth Factors

VEGF &FGF-2 increased significantly

- Integrin $\alpha V\beta 3$ (only transiently expressed in new endothelial membrane) increases correspond to angiogenic growth factors' changes
 - confirms formation of new functional capillaries and O₂ re-supply
 - not previously quantified in human wound fluids
- SDF-1 targets BMEPCs (bone marrow-derived endothelial progenitor cells) to injury site (vasculogenesis augments angiogenesis)

Conclusions

- This physiologically relevant set of biomarkers quantify therapeutic angiogenesis indicating evidence of renewed activation of dormant cells in chronic wounds, and thus healing.
- These 'endogenous' angiogenic biomarkers as surrogate end-points of healing provide evidence allowing comparison of treatment benefits at far earlier timepoints than ultimate clinical endpoints, i.e. full wound closure.
- This mechanism of action analysis of wound responses to transdermal hyperoxia treatment (TWO₂) demonstrates efficacy that reduces costs while improving benefits to a larger number of patients.

References

- · Diabetic cellular dysfunctions
 - Lerman OZ, Galiano RG, Armour M, Levine JP, Gurtner GP. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am J Pathol. 2003;162:303-312.
- VEGF/FGF2
 - Kano MR et al. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling. J Cell Sci. 2005;118:3759-3768.
 - Stavri GT et al. Basic fibroblast growth factor up-regulates the expression of vascular endothelial growth factor in

- vascular smooth muscle: Synergistic interaction with hypoxia. Circulation. 1995;92:11-14.
- Integrin ανβ3
 - Clark RA, Tonnesen MG, Gailit J, Cheresh DA. Transient functional expression of avb3 on vascular cells during wound repair. Am J Pathol. 1996;148:1407-1421.
- SDF-1
 - Gallagher, K.A., et al. 2007. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 α . J. Clin. Invest. 117:1249-1259